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Abstract
We examine theoretically the spin, charge and orbital states in a frustrated
system RFe2O4. We suggest that the orbital degree of freedom is active in
an Fe2+ ion. To describe the spin, charge and orbital states, the effective
Hamiltonian for the electronic state is derived. By utilizing the Monte Carlo
simulation in a finite-size cluster, we investigate the charge, spin and orbital
structures. It is shown that the obtained charge and spin states are consistent
with experimental results in RFe2O4. The numerical simulation for the effective
orbital model does not show the conventional orbital order. We discuss possible
orbital states at low temperatures.

1. Introduction

It is commonly known that the frustration plays a key role in elucidating a large amount of
exotic phenomena in correlated electron systems. One of the attractive examples is the so-called
multiferroics, the coexistence of (anti)ferroelectricity and magnetism, recently discovered
in the rare-earth manganites with perovskite structure RMnO3 (R: rare-earth ion). At low
temperatures, the electric polarization associated with the magnetic ordering of long periodicity
appears and is controlled by the magnetic field. It is supposed that this coexistence is caused
by the spin frustration based on the orbital order.

Layered iron oxide RFe2O4, studied in the present paper, is another class of the exotic
ferroelectric materials where the frustration may play important roles for the electric and
magnetic orderings. This compound shows a layered crystal structure where the Fe–O double
layers and the R–O layers are stacked along the c axis, and Fe ions in a Fe–O layer consist
of the two-dimensional triangular lattice. The electronic structure has been examined by
electron and neutron diffraction experiments. In LuFe2O4, the streak-type diffuse intensity
in the electron diffraction appears along the (1/3, 1/3) direction below 500 K, and, inside
the streak, the peak appears around (1/3, 1/3, m + 1/2) below about 320 K. Because the
nominal valence of an Fe ion is +2.5, this is interpreted to be the two- and three-dimensional
charge orderings (CO) of the Fe2+ and Fe3+ ions [1]. The magnetic order characterized by a
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momentum (1/3, 1/3) is confirmed by the neutron diffraction experiments [2–4]. Through the
macroscopic measurements [5, 6], it is revealed that the electric polarization starts to appear
around 350 K and its magnitude increases at around 260 K. Since these temperatures are close
to the three-dimensional CO temperature and the magnetic ordering temperature, these results
suggest key roles of CO and magnetic order in the electric polarization.

In this paper, we examine theoretically the electronic structure, in particular the spin,
charge and orbital states, in the frustrated system RFe2O4 as a fundamental study of the
ferroelectricity and multiferroics. We suggest that the orbital degree of freedom is active in an
Fe2+ ion. To describe the spin, charge and orbital states, we derive the effective Hamiltonian
for the electronic state. By utilizing the Monte Carlo simulation in a finite-size cluster, we
investigate CO, magnetic structure and orbital structure. The calculated charge and spin states
are consistent with some experimental results in RFe2O4. We examine the orbital state at low
temperatures, where the charge and spin degrees are frozen. The numerical simulation does not
show the conventional orbital ordering. We discuss possible orbital states at low temperatures.

2. Orbital degree of freedom and model Hamiltonian

Let us first pay attention to the orbital degree of freedom in an Fe ion. In the RFe2O4 crystal, an
Fe ion is surrounded by the five nearest-neighbour (NN) O ions: three ions in a two-dimensional
triangular lattice within the plane and two along the c-axis. We calculate the crystal-field
splitting of the Fe 3d orbitals in a FeO5 cluster by utilizing the experimental data of the crystal
structure [7]. We assume a valence of O ions of 2− and the atomic-wavefunction for the Fe 3d
orbitals. It is found that the five-fold orbital degeneracy is lifted to the two sets of the doubly
degenerate orbitals, (dxy, dx2−y2) and (dyz, dxz ), and the non-degenerate d3z2−r2 orbitals, and
the (dxy, dx2−y2) orbitals have the lowest energy for an electron. Since the Fe ion is confirmed
to take a high-spin state, in an Fe3+ ion with the d5 configuration, five 3d orbitals are occupied
by one electron per orbital. On the other hand, in an Fe2+ ion with the d6 configuration, one
hole occupies one of the dxy and dx2−y2 orbitals. That is, the orbital degree of freedom is active
in an Fe2+ ion.

In order to describe the orbital degree of freedom theoretically, the orbital pseudo-spin
operator with a magnitude of 1/2 is introduced;

�Ti = 1
2

∑

s,γ,γ ′
d†

iγ s �σγ,γ ′ diγ ′s, (1)

where diγ s is the annihilation operator for a Fe 3d electron with orbital γ (=dx2−y2, dxy), spin
s (= ↑,↓) at site i , and �σ is the Pauli matrices. In an FeO plane, an Fe ion is surrounded by
three O ions, and there are three kinds of Fe–O bonds, denoted by l (=α, β, γ ). It is convenient
to redefine the pseudo-spin operator for each bond as

τ l
i = cos

(
2πnl

3

)
T z

i + sin

(
2πnl

3

)
T x

i , (2)

with (nα, nβ , nγ ) = (1, 2, 3). This implies a mixing of the dx2−y2 and dxy orbitals, and the
electronic wavefunction corresponding to τ l

i = +1/2(−1/2) is directed (avoided) to a Fe–O
bond with l direction.

Now we construct the model Hamiltonian to describe the electronic structure in RFe2O4.
Among several interactions, we consider that the long-range Coulomb interaction and the
exchange interactions play dominant roles in the spin, charge and orbital degrees of freedom.
These are described by the first and second terms of the following Hamiltonian, respectively:

H = HV + HJ . (3)
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The first term is given explicitly by

HV =
∑

〈i j〉
Vi j ni n j , (4)

where ni is the number operator of the 3d electron at site i . The second term is derived by the
generalized p–d Hamiltonian:

Hpd =
∑

i,γ,σ

εd
γ d†

iγσ diγσ +
∑

i,{γ },{σ }
U d

{γ },{σ }d
†
iγ1σ1

d†
iγ2σ2

diγ3σ3 diγ4σ4

+
∑

i,α,σ

εp
α p†

iασ piασ +
∑

i,{α},{σ }
U p

{α},{σ } p†
iα1σ1

p†
iα2σ2

piα3σ3 piα4σ4

+
∑

〈i j〉,γ,α,σ

tpd
γ,αd†

iγσ p jασ + H.c., (5)

where piασ is the anihilation operator of an O 2p electron with orbital α and spin σ at site i .
εd (εp) indicates the orbital level energy and U d

{γ },{σ } (U p
{α},{σ }) describes the on-site Coulomb

interaction for the d (p) electrons. For simplicity, sets of γi (αi ) and σi for i = 1–4 are described
by {γ } ({α}) and {σ }, respectively. The last term expresses the electron transfer between the
NN Fe and O sites where the dx2−y2 and dxy orbitals are only considered for γ . We derive the

exchange Hamiltonian through the fourth-order perturbation processes with respect to tpd
γα . This

Hamiltonian is divided into the following three parts:

HJ = H2−2 + H3−3 + H2−3, (6)

where Hn−m indicates the exchange interaction between Fe+n and Fe+m ions. Each term is
expressed by a sum of the terms classified by the electron configuration in the intermediate
states. As an example, an explicit form of the dominant term in H2−2 is given by

Hdd1
2−2 = −J dd1

2−2

∑

〈i j〉

(
3
5 + 1

10
�Ii · �I j

) (
1
4 − τ

li j

i τ
li j

j

) (
1
2 − Qz

i

) (
1
2 − Qz

j

)
, (7)

where �Ii is the spin operator with a magnitude of 2, and Qz
i is the pseudo-spin operator for

charge which takes 1/2 for Fe3+ ion and −1/2 for Fe2 one. τ li j is defined in equation (2),
where l is a function of sites i and j . A magnitude of the exchange interaction is given by
J dd1

2−2 = (tpd)4

	2	E with the charge transfer excitation energy 	 from O to Fe, and the energy
difference 	E = E(d7)+ E(d5)− 2E(d6) between the intermediate state and the ground state
of the Fe2+ ion. On the same footing, one term in H2−3 is given by

Hdd2
2−3 = −J dd2

2−3

∑

〈i j〉

(
3
20 − 3

100
�Ii · �J j

) (
1
2 + τ

li j

i

) (
1
2 − Qz

i

) (
1
2 + Qz

j

)
, (8)

where Fe2+ and Fe3+ ions are assumed to be located at sites i and j , respectively. �Ji is the spin
operator with a magnitude of 5/2 for Fe3+ ion, and J dd2

2−3 is the exchange interaction. In both
the terms in equations (7) and (8), the Hamiltonians are represented by products of the spin,
orbital and charge parts.

3. Numerical results

We first show the numerical results for the charge state. The Coulombic term of the Hamiltonian
HV in equation (3) is applied to a pair of the two-dimensional double triangle layers. We
consider, in the Hamiltonian, three of the largest Coulomb interactions, i.e. the in-plane
Coulomb interaction between the NN Fe sites, Vab−NN, the inter-plane interaction between the
NN sites, Vc−NN, and that between the next NN sites, Vc−NNN. We analyse the Hamiltonian
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Figure 1. (a) Temperature dependence of the charge correlation function for several momenta; (b) a
schematic picture of the pseudo-spin alignment and its projection component along Fe–O bonds.

by utilizing the classical Monte Carlo simulation in a 6 × 6-size cluster with the periodic
boundary condition. 100 000 steps are used for thermalization and 100 000 steps are used
for the measurements. The Kawasaki algorithm is used to preserve charge conservation. We
present in figure 1(a) the calculated temperature dependence of the charge correlation functions
for several momentua �q defined by χq = 1

N

∑
i, j 〈ni n j 〉ei�q ·(�ri −�r j ). Parameters are chosen to

be Vc−NN/Vab−NN = 1.2 and Vc−NNN/Vab−NN = 0.5. With decreasing temperature, χ�q at
�q = (1/3, 1/3) increases around T = Vab−NN. This behaviour is consistent with the electron
diffraction experiments where the streak-type diffuse intensity appears along the (1/3, 1/3)

direction. Below about T = 0.2 Vab−NN, χ�q s at other �q grow up and χ�q=(1/3,1/3) is reduced.
It indicates that, in the ground state, several charge alignments seem to be nearly degenerate,
as is known in the antiferromagnetic Ising model in a triangular lattice. Actually, in our mean
field calculation, it is shown that, around Vc−NNN/Vc−NN = 0.5, the charge alignments with
�q = (1/3, 1/3), (1/2, 1/2) and (1/4, 1/4) are degenerate at T = 0, and the (1/3, 1/3) state
with a finite polarization along the c-axis stabilizes at finite temperature. This will be reported
elsewhere in more detail [8].

Next we introduce the results calculated in HV + HJ . Here, we assume that, below the
CO temperature, the system consists of a pair of the 2Fe2+–Fe3+ and Fe2+–2Fe3+ layers. At a
temperature below the CO temperature, a sharp peak appears in the temperature dependence of
the specific heat. This corresponds to the ferrimagnetic spin ordering with �q = (1/3, 1/3), and
the obtained spin structure is consistent with the neutron diffraction experiments [2–4].

Here, we show the orbital state at low temperature, where the charge and spin degrees
of freedom are frozen. Let us consider the orbital state in the 2Fe2+–Fe3+ layer (orbital-rich
layer) where a Fe3+ ion with spin down is surrounded by the six NN Fe2+ ions with spin up. It
is easily shown that, due to the six-fold symmetry, the orbital interaction in a Fe2+–Fe3+ bond
is irrelevant to determining the orbital state. Then, when we focus on the Fe2+ sublattice, the
orbital state is described by the following model in a honeycomb lattice:

Horbital = −Jorbital

∑

〈i j〉

(
1
4 + τ

li j

i τ
li j

j

)
, (9)

where Jorbital is the effective orbital interaction, which is negative. We performed a Monte Carlo
simulation for this model in a finite-size cluster. It is shown that the temperature dependence of
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the specific heat shows a weak cusp at around T = 0.2Jorbital. We calculate the correlation
functions of the pseudo-spin operators defined by Slm

q = 1
N

∑
i, j 〈T l

i T m
j 〉ei�q ·(�ri −�r j ) for all

possible momenta �q in a cluster. However, Slm
q s do not show the remarkable enhancement

at low temperatures and their values are less than 10% of the maximum values. On the
other hand, the so-called Edwards–Anderson parameter defined by qEA = 1

N

∑
i (T z2

i + T x2
i )

increases at around T = 0.2Jorbital and takes its maximum. The orbital-alignment patterns at
low temperatures depend on a simulation, and seem to be random. A schematic picture of the
pseudo-spin alignment in a cell is shown in figure 1(b), where the alignment of �T , as well as
the projection component of the pseudo-spin along the bond, i.e. τ

li j

i , are plotted. It is seen
that three of six τ s are directed inside the cell and other three are outside the cell and, at low
temperatures, this rule is found in all cells. Although the definite orbital state is not identified
at the present stage, we expect that possible orbital states are orbital-glass or- disordered states.
This come from the orbital interaction depending on the bond direction, and the frustration
between the three bonds connecting NN Fe ions.
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